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Schwinger boson mean-field theory: Numerics for the energy landscape and gauge excitations in
two-dimensional antiferromagnets
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We perform some systematic numerical search for Schwinger boson mean-field states on square and triangular
clusters. We look for possible inhomogeneous ground states as well as low-energy excited saddle points. The
spectrum of the Hessian is also computed for each solution. On the square lattice, we find gapless U (1) gauge
modes in the nonmagnetic phase. In the Z2 liquid phase of the triangular lattice, we identify the topological
degeneracy as well as vison states.
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I. INTRODUCTION

Quantum antifferomagnets can display complex many-
body phenomena, with rich phase diagrams, exotic states of
matter with emerging degrees of freedom.1 Indeed, minimizing
a rather simple looking interaction like the Heisenberg one,
�Si · �Sj , can lead to a vast variety of states of matter, depending
on the size �S2

i = S(S + 1) of the spins, the space dimension,
geometry of the lattice, or relative strengths of possible
competing interactions (frustration, etc.). In fact, after many
years of theoretical investigations, the nature of the ground
state of the spin-1/2 Heisenberg model remains controversial
on several two- and three-dimensional lattices. Some of the
most interesting states that can be stabilized at T = 0 are called
spin liquids and have no direct classical analogs. These systems
remain rotationally invariant down to zero temperature. There
is a whole zoo of possible spin liquids, and the most exotic
one have low-energy excitations that carry a half-odd-integer
spin (unlike conventional spin waves).

There are rather few theoretical tools that are able to
describe the limit of strong quantum fluctuations (small S)
for these systems, and spin liquid phases in particular. Among
them, the so-called large-N techniques, introduced by Affleck
for spin chains,2 play a central role. By generalizing the
symmetry group of global spin rotations from SU (2) to
some larger group like SU(N ) or Sp(2N ),3 the model can be
solved in the limit N = ∞. Of course, the physics for N = 2
needs not be simply related to that at N = ∞. However, the
success of these approaches is in part due to the fact that
a number of interesting states that can be realized for SU (2)
models, also exist in the N = ∞ phase diagrams. In particular,
the N = ∞ models are not restricted to have magnetically
ordered ground state, and can have resonating valence-bond
spin liquids ground states with fractionalized excitations and
emerging gauge degrees of freedom. Furthermore, the effect of
finite-N corrections (both perturbative4,5 and nonperturbative
ones6) can be addressed.

In this work, we consider a particular large-N limit, the
so-called Schwinger boson mean-field theory (SBMFT).3,7

It has been applied to many two-dimensional systems,
such as the J1 − J2 square,8 triangular,9–12 honeycomb,13,14

kagome,9,15–17 kagome with further neighbor interactions,17,18

Shastry-Sutherland,19,20 or CaV4O9
21 lattices. This limit can

in particular stabilize magnetically ordered (Néel) states as
well as Z2 spin liquids with gapped spinons.9

The model contains N flavors of spin-1/2 bosons (spinons)
and the parameter that plays the role of the spin value 2S

is the number κ of bosons per site (and per flavor). After
performing a Hubbard-Stratonovich decoupling of the boson-
boson interaction, the different boson flavors are coupled to a
single complex field Aij on each bond ij of the lattice. The
formal (Gaussian) integration of the spinons gives an effective
action Seff,N [A] for the bond field. But the dependence in N

is simple since this action is that of the single-flavor problem
multiplied by a factor N : Seff,N [A] = NSeff,1[A]. When N

is large, it is therefore natural to perform a saddle point
expansion. At the saddle point, the bond-field fluctuations are
frozen, and the effective Hamiltonian is simply quadratic in the
spinon operators. So the action can be computed with the help
of a standard Bogoliubov transformation. Finding a large-N
ground state thus amounts to solving a classical minimization
problem.

Previous SBMFT studies have mostly been focused on the
ground-state properties at N = ∞. However, as a first step to
understand the effects of finite-N corrections, it is interesting
to have access to the low-energy energy landscape of saddle
points. Although the system is locked into the lowest one when
N = ∞, the (large but) finite-N physics must include some
fluctuations between different low-energy saddle points, as
well as some (perturbative in 1/N) fluctuations in the vicinity
of each of these saddle points. Our goal here is to provide a
quantitative description of some excited saddle points.

In order to reduce the number of variables, it is almost
always assumed that the lowest-energy state preserves most
(or at least some) of the lattice symmetries (see Ref. 22 for a
notable exception). In practice, most numerical studied have
so far been restricted to solutions with a unit cell including a
few sites only. This is a reasonable assumption for the ground
state, and we confirm its validity in several cases. However,
since we are interested here in excited saddle points, we need
to be able to compute some spatially inhomogeneous states as
well. We will, however, limit ourselves to time-independent
solutions.

In this work, we perform some extensive numerical mini-
mization to look for the ground state and low-energy excited
states on clusters containing up to 144 sites. We compare
the results we obtain on two different lattices (square and
triangular) and for different values of the boson density
(“spin”) κ .
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II. SCHWINGER BOSON MEAN-FIELD THEORY

To keep this article self-contained, this section presents the
basic ideas and notations of the SBMFT (see also Refs. 23 and
24). “Up” and “down” bosons operators (σ ∈ {↑,↓}), carrying
a spin S = 1/2, are introduced at each lattice site: b

†
iσ and biσ .

The spin operators can then be written:

S+
i = b

†
i↑bi↓, (1)

S−
i = b

†
i↓bi↑, (2)

2Sz
i = b

†
i↑bi↑ − b

†
i↓bi↓. (3)

These relations imply that the commutation relations
[Sα

i ,S
β

i ] = iεαβδSδ
i are automatically verified. The total spin

reads �S2
i = ni

2 ( ni

2 + 1), where ni = b
†
i↑bi↑ + b

†
i↓bi↓ is the total

number of bosons at site i. To fix the “length” of the spins, the
following constraint must therefore be imposed on physical
states:

∀i,
∑

σ

b
†
iσ biσ = κ = 2S. (4)

The Heisenberg exchange Hamiltonian is biquadratic in the
b operators and reads

H =
∑
〈ij〉

Jij Si · Sj (5)

= 1

4

∑
〈ij〉

Jij (b†iσ �σσ,σ ′biσ ′) · (b†jτ �στ,τ ′bjτ ′ ), (6)

where �σ is the vector whose components are the Pauli matrices,
and each lattice bond ij is taken only once. It is convenient to
rewrite H using rotationally invariant bond operators:

H =
∑
〈ij〉

Jij (:B̂†
ij B̂ij : −Â

†
ij Âij ), (7)

where : − : represents normal ordering and the bond operators
Âij and B̂ij are

Âij = 1
2 (bi↑bj↓ − bi↓bj↑), (8)

B̂ij = 1
2 (b†i↑bj↑ + b

†
i↓bj↓). (9)

Â
†
ij creates a spin singlet on the (oriented) bond ij whereas

B̂
†
ij creates a triplet. Due to the constraints, these operators are

linked by the relation

: B̂
†
ij B̂ij : +Â

†
ij Âij = S2 (10)

and it is therefore possible to express the Hamiltonian using Â

only:

H =
∑
〈ij〉

Jij (S2 − 2Â
†
ij Âij ). (11)

The SB mean-field approximation—which can be formally
justified in a large-N limit of the model—consists in decou-
pling the quartic terms and to add some chemical potentials λi

to tune the average number of boson at each site [instead of

Eq. (4)]. The resulting mean-field Hamiltonian is

HMF =
∑
〈ij〉

Jij

(
S2 − 2Aij Âij − 2Aij Â

†
ij + 2

∣∣A2
ij

∣∣)

−
∑

i

λi(b
†
iσ biσ − κ), (12)

where x is the conjugate of x, Aij are complex link variables
with property Aij = −Aji . It is also possible to write a mean-
field theory keeping simultaneously both operators Â and B̂ on
each bond.25,26 This will, however, not be considered here.27

It is convenient to write HMF by grouping the
creation and annihilation operators in a vector φ̂ =
(b1↑, . . . ,bNS↑,b

†
1↓, . . . ,b

†
NS↓)t , where NS is the number of sites

in the lattice. Eq. (12) then reads

HMF = (φ̂)†Mφ̂ + const, (13)

where M is a 2NS × 2NS matrix:

M =
[

−λi JijAij

−Jij Āij −λi

]
. (14)

For simplicity, we restrict the discussion to finite systems
where HMF has a gapped spectrum (possibly vanishing in the
thermodynamic limit). The ground state exists and its spectrum
is gapped if and only if the the matrix M is positive definite.28

We define a diagonal 2NS × 2NS matrix σ : σ = [ −1 0
0 1 ] and,

with the gap condition, σM is diagonalizable (although not
Hermitian) and has pairs of real eigenvalues ±ωn=1,...,NS

,
where the ωn > 0 are the of the Bogoliubov modes of HMF.
The ground-state energy of HMF is given by

EMF =
∑

n

ωn +
∑
ij

Jij |Aij |2 + (2S + 1)
∑

i

λi (15)

(remark: in a large-N formalism, this corresponds to the energy
per flavor).

The self consistency is reached when Aij =< Âij >GS ,
which is equivalent to ∂E/∂Aij = 0, where E is the energy
of the ground state of HMF. The average number of boson
per site is equal to 2S [see Eq. (4)] at the point(s) where
∂E/∂λi = 0. Since ∂2E/∂λ2 � 0 (see this footnote29), this
point corresponds to a maximum of {λi} �→ E[{Aij },{λi}].
For fixed {Aij }, this allows to use a maximization algorithm
to determine the chemical potentials λi[{Aij }]. In a similar
way, the self-consistent {Aij } correspond to a minimum of
E[{Aij },λi[{Aij }]] if the Jij are positive.

A. Gauge invariance and fluxes

The solution of this system of equations is not unique, at
least because of the U (1) gauge invariance of the Hamiltonian.
Under the gauge transformation

bjσ → eiθ(j )bjσ ,

Âij → ei(θ(i)+θ(j ))Âij , (16)

the physical operators (as �Si or H ) stay unchanged. In other
words, the bond parameters Aij label the physical state in a
redundant way. Using gauge transformations, we can fix the
phases of some Aij , without changing any physical observable.
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This decreases the number of variables to be optimized and is,
therefore, useful in numerical studies.

The moduli |Aij | are of course gauge invariant quantities,
simply related to the energy. But some combinations of
complex phases around closed loops are also gauge invariant.
Consider the following operator Âi1i2···i2n

Âi1i2···i2n
= Âi1i2

(−Â†
i2i3

)
Âi3i4 ...

(−Â†
i2ni1

)
. (17)

This operator is defined on any loop with an even length on
the lattice and is manifestly gauge invariant. Its mean-field (or
large-N ) counter part,

Ai1i2···i2n
= Ai1i2

(−Āi2i3

)
Ai3i4 . . .

(−Āi2ni1

)
, (18)

gives the flux φi1i2···i2n
= arg(Ai1i2···i2n

) recently discussed by
Tchernyshyov et al.30

In general, the number of variables (all the moduli, plus
some phases) grows with the system size. Since it is quite
difficult to perform an exhaustive search for mean-field
solutions if the number of parameters is extensive, the usual
strategy is to decrease the number of bond variables by
assuming that the ground-state solution preserves some (or all)
symmetries of the lattice. There are, however, some examples
where the lowest energy solution spontaneously breaks some
symmetries (kagome clusters with 36 or 48 sites31).

III. NUMERICAL METHOD

We describe an algorithm to find saddle points (self-
consistent mean-field state), local minima, and (hopefully)
global energy minima.

A. Determination of the chemical potentials

For given values of the bond parameters Aij , one should first
adjust the chemical potentials {λi}. The basic idea is to perform
a (nonlinear) least-square minimization of

∑
i f

2
i , where

fi({λj }) = 〈n̂i〉 − κ is a function of the chemical potentials.
Since each density 〈n̂i〉 is an increasing function of λi , this
method converges relatively rapidly. To do so, we use an
implementation of the Levenberg-Marquart algorithm.32 To
make the method faster, we provide the gradient matrix Gij =
∂〈n̂i 〉
∂λj

explicitly. Gij is easy to compute using linear-response
theory (using the matrix which implements the Bogolibov
transformation, as well as the energies ωi). The iterative
minimization should start in a region of the space of λ where
the Bogoliubov transformation exist (M > 0). If the values of
λ obtained at the previous step do not satisfy this condition
with the new {Aij }, one starts the least-square minimization of∑

i f
2
i from a sufficiently low and uniform λ.

Finally, we note that for some values of the bond parameters
Aij , there is no uncondensed state satisfying 〈n̂i〉 = κ . If such a
situation is encountered, we add some artificial energy penalty
so that the energy-minimization algorithm (next section) tends
to escape this point.

B. Optimization of the bond parameters Ai j

Equipped with a procedure to compute the λi as a function
of the Aij , we can start to look values of Aij which correspond
to self-consistent mean-field states. The first stage is simply
to iterate the bond self-consistency conditions in the usual
way: (1) we start from initial random bond values (or

perturbing a previously found solution). (2) After adjusting
the λ by the procedure above, the ground state is obtained by
Bogoliubov transformation, and the expectation values 〈Aij 〉
are computed. (3) The bond parameters are replaced by the
values above. The new bond parameters are gauge transformed
to a fixed gauge choice where a maximum number of bond
parameters are set to be real. This avoids some possible slow
drift of some complex phases of the Aij which would be
nonphysical. (4) Go back to step 2 until the bond parameters
do not change by more than a small threshold ε.

This method was used by Hermele et al.22 in a similar
context. It is easy to check that local minima are attractive
for these iterations while local maxima a repulsive. More
precisely, the error will decrease (respectively increase) in
the directions corresponding to eigenvectors of the Hessian
[anticipating on Eq. (20)] with positive (respectively negative)
values. The convergence is faster if the Hessian eigenvalues
are large and positive. It practice, the iterations above allow to
quickly go down in energy, but it is not efficient to achieve a
full convergence when the system has more than ∼10 bonds
or so. Indeed, it turns out that a high accuracy is required to
resolve the possibly small differences (bond modulations, etc.)
between different saddle points.

To find accurately the self-consistent state, the second
stage amounts to perform a least-square optimization on∑

ij g2
ij , where gij ({A}) = 〈Âij 〉 − Aij is a function of the

bond parameters. Of course, the expectation values 〈Âij 〉 are
computed after the λi({A}) have been determined. This second
stage allows to converge not only to local extrema but to
saddle points as well. Again, we use a Levenberg-Marquart
minimization algorithm,32 with explicit calculation of the

gradient ∂〈Âij 〉
∂Akl

at fixed densities 〈n̂〉 = κ . The later is again
obtained using linear-response theory, with the additional
complexity that it contains some terms coming from the
variation of the λ:

∂〈Âij 〉
∂Akl

∣∣∣∣
〈n̂〉=κ

= ∂〈Âij 〉
∂Akl

∣∣∣∣
λ fixed

+
∑
a,b

∂〈Âij 〉
∂λa

×
[
∂〈n̂〉
∂λ

]−1

ab

∂〈n̂b〉
∂Akl

∣∣∣∣
λ fixed

. (19)

As for the first stage, we work with bond variables
corresponding to a fixed gauge choice. In particular, the matrix
of Eq. (19) is evaluated in the subspace of bond parameter vari-
ations that are orthogonal to pure gauge transformations. This
is important to get rid of unphysical slow phase drifts during
the iterations. Most of the time a double precision accuracy in
reached in less than ten Levenberg-Marquart iterations when
the system has less than one hundred bonds or so.

Finally, the optimization is repeated using at least a few
hundred (often thousands) of random initial conditions for the
Aij . This is relatively time consuming since each evaluation of
the energy (or its derivatives) requires a numerical adjustment
of the chemical potentials (see Sec. III A), which is itself a
(convex) least-square problem with many variables.

Varying the parameter ε (stopping criterion for the iterations
of stage 1) allows to tune if the method will converge toward
very low-energy saddle points (small ε), or saddle point at
higher energy (larger ε). If ε is very small (say 10−5), the first
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stage will terminate close to the ground state and the second
step (least-square) will converge to the ground state with high
probability if the system is not too large (�100 bonds). On the
other hand, if ε is too large, the first stage will stop at some
relatively high energy configuration. In such region of the A

space, we expect a very (exponentially) high density of saddle
points. In practice, this density of saddle point is so high that
the program will find a new solution at every run, and a given
saddle point will rarely be obtained twice. The best choice is
to adjust ε so that the iteration stage leads to configurations
in a typical energy range above the ground state where the
number of saddle points is not too large (a few tens). In such
a case, after a sufficiently large number of runs, one obtains
the full (or almost full) list of saddle points in that energy
window. Of course, due to the large number of variables, one
cannot exclude the presence of some additional saddle points
with a small basin of attraction with respect to this algorithm.

C. Hessian and stability

The least-square procedure described above leads to self-
consistent mean-field states, satisfying Aij = 〈Âij 〉. These
states are saddle point of the energy (considered as a function of
the Aij , and the chemical potential being themselves functions
of the Aij ). To check if each mean-field state is a local
minimum, local maximum, or generic saddle points with stable
as well as unstable directions, we compute the Hessian matrix:

Kl,l′ = ∂2EMF

∂Aε
l ∂Aε′

l′
= 4Jl

(
δll′δεε′ − ∂〈Âε

l 〉
∂Aε′

l′

∣∣∣∣
〈n̂〉=κ

)
, (20)

where l and l′ represent two bonds and ε and ε′ denote the
real or imaginary part of the bond variables [see Eq. (19) for
derivatives of the bond expectation values at fixed densities].

Due to the gauge invariance of the model, the Hessian
contains some zero eigenvalues associated to infinitesimal
gauge transformations. The number of such gauge modes can
be computed on each given lattice (using the rank of a modified
adjacency matrix of the lattice33), and these nonphysical zero
eigenvalues are of course discarded when discussing these
solutions. For the clusters studied here, the number of zero
eigenvalues is always equal to the number of pure gauge
modes, so we can conclude that there is no physical zero mode
in the Hessian. The sign of the smallest nonzero eigenvalue of
K tells us whether the mean-field state is a local minimum, or
an unstable saddle point.

The spectrum of the Hessian for the ground state gives some
information about the magnitude of the 1/N corrections due to
Gaussian fluctuations in the vicinity of the energy minimum.
Finally, the spatial structure of the lowest eigenvector of the
Hessian gives some information about the physical nature of
these fluctuations.

IV. NUMERICAL RESULTS

A. Square lattice

The SBMFT phase diagram is well known on the square
lattice: magnetic long-range order for κ � 0.39 (see Ref. 7)
and a disordered phase with gapped spinons for κ � 0.39
[“Coulomb” phase, unstable at finite-N (see Ref. 6)]. In the
ordered phase, the spinon gap drops as ∼1/Ns (Ns is the

number of sites) and Bose-condensation occurs in the thermo-
dynamic limit, leading to spontaneous break down of the spin
rotation symmetry. By considering here only finite clusters,
the ground state is always rotationally invariant and the gap
finite. Still, both phases can be distinguished using standard
finite size-scaling for the gap or spin-spin correlations. We
will discuss how the “energy landscape” of mean-field saddle
points differ between the two phases.

1. Hessian of the ground state and gauge modes

We did some extensive search for saddle points on square
lattices with 36 sites and with κ = 0.1 and κ = 1. The ground
state, as expected, is spatially uniform, real, and has a vanishing
flux on all the square plaquettes, whatever the boson density.
However, the spectrum of the Hessian is quite different in the
magnetic phase and in the disordered phase.

In Fig. 1, the smallest eigenvalue of the Hessian [see
Eq. (20)] is plotted as a function of the κ for different
system sizes (up to 144 sites). Although finite-size effects
are important, these data indicate that the Hessian is gapped in
the thermodynamic limit for large κ , while it becomes gapless
for small κ . The transition very likely coincides with that of
magnetic long-range order.

The gaplessness of the Hessian in the disordered region is
due to the bipartite character of the lattice. On a bipartite
lattice, the bond parameters are invariant under staggered
gauge transformations:

brσ −→ brσ ei(−1)r θ , (21)

Arr ′ −→ Arr ′ , (22)

which, in Wen’s terminology,34 means that the invariant gauge
group (IGG) is U (1).

If we perform a spatially varying gauge transformation
including the staggered factor, we get

brσ −→ brσ ei(−1)r θ(r), (23)

Arr ′ −→ Arr ′ei[θ(r)−θ(r ′)], (24)

where r (respectively, r ′) is on the even (respectively, odd)
sublattice. Starting from a state described by A0

rr ′ we construct
a phase fluctuation of the bond parameters parameterized by
arr ′ ∈ R:

A′
rr ′ = A0

rr ′ + dArr ′ = A0
rr ′e

iarr′ . (25)

From Eq. (24), arr ′ transforms as a conventional U (1) gauge
field:

arr ′ −→ arr ′ + θ (r) − θ (r ′). (26)

So, if we denote by E({arr ′ }) the energy of the perturbed
mean-field state (after the appropriate adjustment of the
chemical potentials), the energy should be gauge invariant
under Eq. (26). In the small-κ phase where the bosons are
gapped and their correlation length is short, E({arr ′ }) should
be a local (short-ranged) function of the fluctuation arr ′ .

The simplest local term compatible with gauge invariance
would be the lattice version of the magnetic energy ( �∇ ×
�a)2, and would take the form of the square of the circulation
of �a around small loops (this can also be obtained from a
small-κ expansion30). This would give an Hessian eigenvalue
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scaling as the square of the smallest available wave vector,
that is ∼ 1/L2 ∼ 1/Ns (L the linear size and Ns the number
of sites). Such modes are indeed found in the spectrum of the

FIG. 1. (Color online) Square lattice model. (Top) Spin gap as a
function of κ . In the thermodynamic limit this state is associated to
magnetic long-range order (vanishing spin gap) for κ > κc � 0.39.7

(Middle) Smallest eigenvalue of the Hessian for the ground state on
36, 64, and 144-site square lattices. (Bottom) Scaling of the lowest
Hessian eigenvalue as a function of the system size Ns . This shows
that the Hessian is gapless for κ = 0.2 and gapped for κ = 0.8. The
Hessian gap is finite in the magnetic phase, while it vanishes in
the thermodynamic limit for κ < κc. For κ = 0.2, first eigenvalues
decays faster than 1/Ns whereas the second eigenvalue goes to zero
as ∼ 1/Ns (see text).

FIG. 2. (Color online) Hessian eigenvector dAl corresponding to
the second smallest eigenvalue (0.26224396339) for a 64-site square
lattice with κ = 0.2. The thickness of each bond l is proportional to
the modulus |dAl | while the color represents the complex argument of
dAl/Al . Red: argument is +π/2, blue is −π/2. Here, dA is a gauge
excitation, it corresponds to a long wavelength modulation of the flux
through each plaquette. Here, the wave vector is parallel to the hori-
zontal bonds. This gauge mode is associated to the smallest nonzero
wave vector on the square lattice and is therefore fourfold degenerate.

Hessian and correspond to the second nonzero eigenvalue. The
associated eigenvector is displayed in Fig. 2. The thickness of
each bond l is related to the modulus |dAl| while the color
represents the complex argument of dAl/Al . In the present
case, these complex arguments take only two values: ±π/2
(blue and yellow), indicating that dA is a gauge mode of the
form of Eq. (25), with dAl/A

0
l ∼ ial ∈ iR. In the present case,

al ∼ cos(2πxl/L) for a vertical link l (oriented from the even
to the odd sublattice) at horizontal position xl , and al = 0
on horizontal bonds. This gauge model may be viewed as a
low-energy “photon” of the effective gauge theory.6

In fact the numerical data indicate that the lowest eigenvalue
of the Hessian decays faster than 1/Ns (see Fig. 1). The
associated mode is represented in Fig. 3 and is also a gauge
mode (dAl/A

0
l is purely imaginary). Inspecting the sign of al ,

one sees that it corresponds to a change in the “global” flux
associated to the large loops encircling the torus while local
loops are unaffected by this gauge mode. The structure of this
eigenvector of the Hessian turns out to be the same for all
system sizes we studied. We expect its eigenvalue to decay
exponentially with the system size in the small-κ phase.

In the Néel phase, E({arr ′ }) need not be short-ranged and
the argument above fails. Indeed, the spinons are charged
particles for the gauge field and their condensation gaps out
the gauge degrees of freedom (Anderson-Higgs mechanism).
In the Néel phase, computing the boson energy in presence of
a global flux (through loops encircling the torus) amounts to
impose some twist on the spin directions and the finite spin
stiffness ρ naturally leads to an energy cost proportional to
the square of the flux, and leads to a finite Hessian eigenvalue
proportional to ρ. In turn, the finite Hessian gap in the Néel
phase indicates a relative stability of the mean-field state with
respect to Gaussian 1/N corrections.
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FIG. 3. (Color online) Hessian eigenvector dAl corresponding to
the smallest eigenvalue (2.62955994344) for a 36-site square lattice.
Same representation as in Fig. 2. The complex argument of dAl/Al

takes only two values: ±π/2 (blue and red), indicating that dA is a
gauge excitation. This mode corresponds to an increase of the flux
through large horizontal loops, and no change for the flux going
through local plaquettes.

2. Excited mean-field solutions for κ = 1

For κ = 1 (Néel phase), our search for saddle point on the
36 site cluster shows that the ground state (−30.93605205126)
is well separated from the first excited saddle point (E =
−28.82425530821, Fig. 4). No local minimum was found at
low energy (see Table I), but only saddle points. In addition, the
excited saddle points turn out to have very unstable directions
(strongly negative Hessian eigenvalues). There might be some
other mean-field states in the energy range of Table I, but these
should have rather small basin of attraction with respect to our
search algorithm, since this list of the twelve lowest energy
state is stable after thousands of runs starting from random
initial conditions.

The first excited saddle point is displayed in Fig. 4. It
takes the form of an excitation localized around one site (here
site number 14). This state is chiral, with a flux equal to
±0.40461332π on the four square plaquettes touching the
center of the excitation. The flux then decreases quickly with

FIG. 4. (Color online) First excited mean-field solution on a
square lattice with 36 sites and κ = 1. The modulus of the bond
parameter (right color scale) is indicated, as well as the chemical
potentials (left scale). This solution shows a localized excitation
(here around site number 14). The flux decays rapidly with distance
from the center: 0.4046133π on plaquette8, 9,15,14, 0.037028π on
plaquette [1,2,8,7], −0.005291300π on [0,1,7,6], 0.0001131π on
[4,5,11,10], etc. See Fig. 5 for some the spin-spin correlations in
this state.

distance (see caption of Fig. 4), but the fact that some nontrivial
fluxes (different from 0 or π ) exist around the center of the
excitation shows that it induces some nonplanar spin-spin
correlations. Far from the center of the excitation, the spins
remain in a collinear and in an ordered structure, as can be seen
on the spin-spin correlations displayed in the bottom panel of
Fig. 5. As for the center spin (number 14), it is correlated with
its neighbors, but it is very weakly correlated (〈�S14 · �Si〉 � 0)
with the sites which are far apart (top of Fig. 5). Although the
system is magnetically ordered, this pointlike “defect” does
not seem do have a simple semiclassical analog. Interestingly,
a similar pointlike “defect” excitation is found in the ordered
phase of the triangular lattice.

3. Excited mean-field solutions for κ = 0.1

For κ = 0.1, the ground state on the square lattice is still
uniform and without any flux, but the spinon gap (see Fig. 1)

TABLE I. Low-energy saddle points for a square lattice cluster with 36 sites and κ = 1. From the left column to the right: energy, spinon gap, lowest nonzero
Hessian eigenvalue, degeneracy, number of different chemical potentials λ (1 means uniform, etc;), minimum and maximum values of λ, number of different
values of |A| minimum and maximum values of |A|, and real (R) or complex/chiral solution (C). The spatial modulations of |Aij | and λi for solution a are
displayed in Fig. 4. Solution b has the same spatial structure (twofold degeneracy) as the one shown in Fig. 6(b).

E � H d Nλ minλ maxλ N|A| min|A| min|A|

−30.93605205126 0.14402872021 2.6295599434 1 1 −2.33625413623 −2.33625413623 1 0.58295256650 0.58295256650 R
−28.82425530821a 0.12128968489 −7.7009935434 36 10 −2.35767326534 −0.80802876988 12 0.46297459737 0.58363641125 C
−28.78219048843 0.10001664198 −50.5062824348 72 13 −2.36085237706 −0.70467719552 18 0.45635222273 0.59393955633 R
−28.36943538503 0.15018056150 −26.9056949522 72 12 −2.37180295956 −1.25427516482 25 3.06482822239e−15 0.78318014761 C
−27.87811171341 0.10635799592 −48.4908669283 72 12 −2.37611640988 −1.20158916706 18 0.33406678717 0.62744479349 R
−27.67404431445b 0.24030790672 −33.3227937772 2 1 −2.12079971339 −2.12079971339 2 0.52769740399 0.59657118301 R
−27.58542591653 0.12018732985 −11.9733712946 72 16 −2.38843405218 −1.28794576300 24 0.29836817056 0.63116481780 C
−27.55178404956 0.08439099361 −67.0253600361 72 16 −2.48677863782 −1.13200578463 24 3.38069859599e−16 0.64685457030 C
−27.52461818853 0.19788831856 −3.8580290414 36 6 −2.23233357411 −1.87795360324 14 0.45547996236 0.59859663572 C
−27.49457258263 0.18888774623 −1.9063958450 36 8 −2.24866064506 −1.74743986196 14 0.46141122781 0.60087012841 C
−27.49456554040 0.19367584933 −5.7251545034 36 6 −2.22476689000 −1.75751056646 14 0.34656259228 0.60092322028 C
−27.40385237877 0.16760744308 −21.1217748777 144 18 −2.32248736876 −1.30042949863 38 0.27024089067 0.64068344661 C
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FIG. 5. (Color online) Spin-Spin correlation in the first excited of
a 36-site square lattice with κ = 1 (same state as in Fig. 4). The radius
of the circle on site j proportional to the correlation |〈 �Si0 �Sj 〉| with
the reference site i0 (the sign is available on the color scale). (Top)
Reference spin i0 = 14 is at the center of the localized excitation.
(Bottom) Reference spin i0 = 35 is “far” from the center of the
excitation.

remains finite in the thermodynamic limit. This mean-field
state has been argued6 to be unstable at finite N , due to strong
gauge fluctuations. The finite N ground state is believed to
spontaneously break some lattice symmetry to form a valence-
bond crystal (VBC). In fact, the mean-field energy landscape is
very different from the one observed in the the magnetic phase.
The first local minima and saddle points are listed in Table II.

We observed a high density of local minima and saddle
points, with very small Hessian eigenvalues. This high density
of excited saddle points reflects the presence of some strong
gauge fluctuations at (large but) finite N . We note that
several such saddle points display modulations of the bond
amplitudes |A| that have the same symmetries as the VBC
previously considered for square lattice antiferromagnets. The
first excitations (line a in Table II) shows a one-dimensional
modulation, which is predicted to occur at finite N when κ =
2 mod 4.6 And among the highly symmetric solutions we also
note a plaquette VBC (E = −1.82534862050) (see Fig. 6).
This state does, however, not correspond to a simple VBC since
it is a complex/chiral solution with nontrivial (different from
0 or π ) fluxes on all the square plaquettes. See also Fig. 7 for
another VBC-like state. According to the analysis of Read and
Sachdev, nonperturbative gauge fluctuations (proliferation of
hedgehogs point-like instantons) are responsible for the lattice
symmetry breaking at finite N , leading to a modulation of |A|,
which is exponentially small in N . The mechanism is some-
what different here since we observe VBC-like low-energy
saddle points although gauge fluctuations are completely
absent (all the Aij are frozen in the SBMFT).

B. Triangular lattice

1. Hessian of the ground state

On the triangular lattice, we find that the lowest energy
state corresponds to the (spatially uniform) solution studied
by Sachdev9 (0-flux state15) and leads to magnetic long-range
order (

√
3 × √

3) for κ > 0.34, and a gapped and deconfined
Z2 liquid for κ � 0.34. As usual, these two phases can
be distinguished by the spinon gap: it drops to zero when
increasing the system size in the magnetic phase and stays
finite in the liquid phase (see Fig. 8).

The Hessian has a large lowest eigenvalue, which indicates
the stability of this mean-field state with respect to 1/N

TABLE II. Low-energy saddle points for a square lattice cluster with 36 sites, κ = 0.1. Solutions a and b are displayed in Fig. 6, and solution c is shown in
Fig. 7.

E � H d Nλ minλ maxλ N|A| min|A| min|A|

−1.83492169860 0.40562447718 0.0514862091 1 1 −0.62322660824 −0.62322660824 1 0.11828994799 0.11828994799 R
−1.83349695884a 0.43766690295 −0.0513757991 2 1 −0.62174106995 −0.62174106995 2 0.11707639293 0.11940834877 R
−1.83265972180 0.42301616405 3.3891521814e−05 36 6 −0.62283957972 −0.61901747505 12 0.11749362973 0.11895083747 C
−1.83265969367 0.42301757051 −3.3879532685e−05 72 12 −0.62289751868 −0.61872552844 25 0.11742978176 0.11900687718 C
−1.83265966553 0.42301846049 −3.3877477372e−05 36 10 −0.62295399258 −0.61842513968 12 0.11745616476 0.11898150831 C
−1.83162471056 0.41456789451 −0.2513880759 36 6 −0.62576828556 −0.60318829800 12 0.10370572327 0.13006171701 C
−1.83121683711 0.41375814481 −0.2872095650 72 12 −0.63567288324 −0.58931901135 25 0.03077944153 0.13945180759 C
−1.83088353771 0.43032855876 −0.2737625727 72 9 −0.62660943591 −0.60282776054 24 0.10017310034 0.13081740450 C
−1.83047599540 0.42976957584 −0.3191268237 72 12 −0.63670770779 −0.58921985280 25 0.01544819043 0.13979752631 C
−1.83036799495 0.43107796748 −0.3414892108 72 12 −0.63601360482 −0.58745590945 25 0.00522910878 0.14104278833 C
−1.83004203619 0.43897814318 −0.2774384716 36 6 −0.62530891168 −0.60252710044 12 0.10277137746 0.13077306110 C
−1.82976553423c 0.44236450064 0.0004197766 9 3 −0.62142264885 −0.61823831215 4 0.11796026878 0.11822830533 C
· · ·
−1.82534862050b 0.45598298556 0.0049547827 4 1 −0.61651000360 −0.61651000360 2 0.11510636037 0.12084117665 C
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FIG. 6. Two low-energy mean-field solutions on a square lattice
with 36 sites and κ = 0.1. |A| takes only two values and the bonds
with the stronger |A| are indicated by fat grey lines (for values, see
Tab. II). All the sites are equivalent and the chemical potential is
uniform in both cases.

fluctuations. The evolution of this lowest eigenvalue is plotted
in Fig. 8. It slightly decreases with the system size (comparing
36 and 144 sites), but is certainly finite in the thermodynamic
limit. Contrary to the square lattice situation, one does not

FIG. 7. (Color online) A low-energy mean-field solution on a
square lattice with 36 sites and κ = 0.1. The modulus of the bond
parameters is indicated—the right color scale shows deviations from
the minimum value. The left color scale indicates the chemical
potentials (dot on each site). This solution shows modulations with
the symmetries of a 3 unit cell VBC.

FIG. 8. (Color online) (Top) Smallest eigenvalue of the Hessian
for the ground state state on 36-site and 144-site triangular clusters.
(Bottom) Spin gap. In the thermodynamic limit, this state is associated
to magnetic long-range order (vanishing spin gap) for κ � 0.34.9

detect any dramatic change of behavior between the gapped
phase and the magnetic one.

In fact, since the lattice is no bipartite, the IGG of the
uniform mean-field state is discrete (Z2) and we do not expect
any gapless modes associated to small perturbations Aij =
A0

ij + dAij = with |dAij | � 1. Still, important Z2 (gapped)
gauge excitations are expected in the spin liquid phase, and
they will be discussed in Sec. IV B3.

The lowest eigenvector of the Hessian is represented in
Fig. 9 for κ = 0.1. As in all the cases we looked at, it
correspond to a phase fluctuation of the bond variables. The
associated flux modulations for all diamond loops are shown
in the bottom panel of the figure (note that the sign of each
flux is somehow arbitrary since it depends on the choice of an
origin of the loop). This mode represent the lowest energy U (1)
gauge excitation. It is gapped since U (1) is not the low-energy
gauge group (IGG) of this mean-field state.

2. Excited mean-field solutions

In Table III, we list these first mean-field states obtained
for κ = 1 in a 36-site sample. As for the square lattice in
its magnetic phase, we only find saddle points and no local
minima among the first states. The first excited saddle point
is at an energy 0.94927 above the ground state and this gap
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FIG. 9. (Color online) Hessian eigenvector dA/A corresponding
to the smallest (degenerate) eigenvalue (0.1943) for a 144-site
triangular lattice with κ = 0.1 (uniform ground state). The complex
argument of dA/A take only two values: ±π/2 (blue and yellow),
indicating that dA is a (gapped U(1)) gauge excitation. (Bottom)
Infinitesimal flux variation dF associated to the gauge mode above.
For each diamond, the magnitude of the flux variation is indicated by
the radius of the dot in its center (see color scale for the sign).

is very likely finite in the thermodynamic limit. This excited
state has the spatial structure of a localized excitations (see
Fig. 10) that resembles that of the square lattice. Finally, we
note that contrary to the square lattice case, the lowest energy

FIG. 10. (Color online) First excited state on a triangular cluster
with 36 sites and κ = 1. The bond moduli are invariant by lattice
rotations about the site largest chemical potential (grey circle). The
flux vanish on all diamonds except for the six diamonds which
diagonal bond is marked by a red dot. The later have flux π . Notice
the similarity with Fig. 4.

states of Table III have real bond amplitudes (more precisely:
can be made real with an appropriate gauge choice), indicating
the coplanar nature of their spin-spin correlations.

For small enough κ , the SBMFT describes a gapped spin
liquid of Z2 type.9,15 Table IV gives the first saddle points
obtained at κ = 0.1. The ground state is uniform and all the
rhombi have a vanishing flux, as expected. The first excited
saddle point has slight modulations (∼6 × 10−4) of the bond
amplitudes (see Fig. 11). This state also has vanishing fluxes
on all the rhombi, but it differs from the ground state by
the presence of an additional flux π along some long loop
winding around the torus (three possible choices). These three
states become homogeneous in the thermodynamic limit and
degenerate with the ground state. With the ground state they
form the fourfold topological degeneracy of the Z2 liquid
on a torus.3,35 These states were found by the optimization
algorithm starting from random initial conditions, and not
“forced” by hand. We are thus confident that the method is
able to find the low-energy solutions in a systematic way on
small clusters at least up to a few tens of sites and bonds.

Above the four topological ground states we observe many
saddle points which do not show any simple/regular spatial

TABLE III. Energy minimum and low-energy saddle points for a triangular lattice cluster with 36 sites and κ = 1. Notice that the ground state is very stable
(large Hessian gap: 1.051) and that all the other saddle points are unstable (negative Hessian eigenvalue). The gap −25.454 + 26.404 = 0.949 is quite large. The
ground state (E = −26.40405992819) is a solution with vanishing flux on all the diamonds and three-sublattice long-range spin-spin correlations (the critical
value for magnetic long-range order is κ = 0.34.9). The bond strength of the first excited state are displayed in Fig. 10.

E � H d Nλ minλ maxλ N|A| min|A| min|A|

−26.40405992819 0.15424645309 1.0517831524 1 1 −2.58830049633 −2.58830049633 1 0.49723336391 0.49723336391 R
−25.45478884810 0.14039937369 −2.3583827803 36 7 −2.68083518864 −1.66967911414 12 0.41812686812 0.56615895080 R
−24.89782095003 0.13788292075 −2.1218542408 108 12 −2.66775663053 −1.86004294873 31 0.25950830810 0.56907182479 R
−24.88367410179 0.11975325026 −2.3419680753 432 36 −2.76307967976 −1.75626091358 108 0.13936678359 0.57983094362 R
−24.88248919944 0.14303067790 −2.3536310845 216 18 −2.72365738218 −1.77512884614 56 0.18149763138 0.57925175603 R
−24.85225639276 0.05506495561 −2.6494385700 216 21 −2.87033693396 −1.82953713470 57 0.05089520618 0.56602789699 R
−24.54012950533 0.07534371832 −2.7179265074 216 18 −2.83154574151 −1.61720470431 56 0.25139432620 0.57460696668 R
−24.52557412388 0.06458137688 −2.4327487996 216 18 −2.82124110423 −1.87789249232 56 0.09674702612 0.56912072760 R
−24.51689402152 0.10842201321 −2.4288970581 72 10 −2.79081268614 −1.66076773241 21 0.35681606435 0.56617071630 R
−24.42913380032 0.13143243020 −2.5993027532 54 8 −2.66560684707 −1.62001869447 17 0.38239562932 0.56552771557 R
−24.38386557808 0.12833408469 −2.0204356396 108 13 −2.73034611703 −1.88206681620 30 0.25362349993 0.56892183451 R
−24.36651624089 0.11045933281 −2.2168211792 432 36 −2.76253254084 −1.77578363386 108 0.10590160533 0.58136368633 R
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TABLE IV. Low-energy saddle points for a triangular lattice cluster with 36 sites and κ = 0.1. The ground state and the first excited saddle point
(E = −1.76857445623, threefold degenerate) form the fourfold topological degeneracy.3,35 The other saddle points listed here are chiral(complex), except for
the last line, which corresponds to a pair of visons (see Sec. IV B3 and Fig. 12).

E � H d Nλ minλ maxλ N|A| min|A| max|A|

−1.77115513853 0.39183413870 0.2418792448 1 1 −0.63927958247 −0.63927958247 1 0.09721004221 0.09721004221 R
−1.76857445623 0.43969994315 0.1404951036 3 1 −0.63620536809 −0.63620536809 2 0.09694182615 0.09756074413 R
−1.76558449027 0.40008559551 −0.0136673394 108 13 −0.64036695527 −0.61163933625 30 0.08631046645 0.10220320383 C
−1.76556438644 0.39881698544 −0.0662494156 216 21 −0.64094448900 −0.60807754792 57 0.07142251452 0.11045947514 C
−1.76519815707 0.40323866935 −0.0476017475 216 21 −0.64101212209 −0.62149883058 57 0.08166138572 0.10941122095 C
−1.76517640350 0.40348584568 −0.0574617718 432 36 −0.64242077150 −0.62028199544 108 0.08102625728 0.11240116020 C
−1.76512811482 0.40255745524 −0.0675887556 216 21 −0.64418307267 −0.62192577975 57 0.07214207918 0.11553853523 C
−1.76498033616 0.40426965800 −0.0822323880 216 18 −0.64027903292 −0.62235496321 56 0.07818420245 0.11549233664 C
−1.76494386569 0.40647240030 −0.0077675537 108 12 −0.64031335557 −0.61976563929 31 0.08656330909 0.10201782841 C
−1.76490270376 0.41103320490 0.0552851450 216 18 −0.64030870204 −0.62463756694 56 0.08904499619 0.10413653140 C
−1.76486322625 0.40885376933 −0.0517770911 432 36 −0.64144886953 −0.62152076605 108 0.08370457723 0.10627245220 C
−1.76481070231 0.40714839383 −0.0588744760 216 18 −0.64059451058 −0.62076171059 56 0.08285231897 0.10673538608 C
· · ·
−1.76267094982 0.41119320956 −0.2136294440 108 12 −0.64647502600 −0.60434357136 31 0.07784772351 0.11384461169 R

pattern (high number of inequivalent sites and bonds). These
states have energies significantly below the first vison-pair
state we have found (last line in Table IV and Fig. 12). Due
to the presence of complex fluxes (not 0 or π ), these states
do not have a simple interpretation in terms of the Z2 gauge
field. The presence of these additional degrees of freedom is
somewhat intriguing since the low-energy description of such
a short-ranged RVB phase is expected to be Z2, a gauge theory
coupled to gapped spinons.

3. Visons

A Z2 liquid possesses nonmagnetic excitations named
visons, which correspond to π -flux quanta of the effective
Ising gauge theory.6,35 In a finite system (without boundaries),
the number of vison is necessarily even, and a trial vison-pair
state can be constructed as follows. One starts from the uniform
mean-field ground state and one reverses the sign of the bond
parameters Aij for all the bonds ij crossing a cut extending
from the a first plaquette to a second one. The gauge flux

FIG. 11. (Color online) First excitation on a triangular cluster
with 36 sites and κ = 0.1. This state is threefold degenerate. With the
ground state, it forms the fourfold topological degeneracy expected
for aZ2 liquid on a torus. Notice (scale on the right) that the difference
between the largest |Aij | and the smallest one is only ∼ 6.10−4 and
should vanish in the thermodynamic limit.

is then concentrated in the immediate vicinity of these two
plaquettes, which correspond to the vison core positions. Any
gauge-invariant operator far from the vison cores is unaffected
by this modification.

Due to the presence of flux π for each loop encircling a
vison core, such a trial state is in general not self-consistent
(〈Âij 〉 �= Aij and 〈n̂i〉 �= κ). To obtain a self-consistent state
(saddle point), the bond moduli as well as the chemical
potentials should be re-adjusted in the vicinity of the vison
cores. We obtain numerically such self-consistent vison-pair

FIG. 12. (Color online) (Top) Modulus |A| and chemical potential
for a saddle point with two visons at distance d = 5

√
3/3, (6 × 6

triangular lattice, κ = 0.2). (Bottom) Flux vanishes on all diamonds
except those with the diagonal tagged with a grey circle. The visons
are localized on the triangles with three such circles.
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FIG. 13. (Color online) Modulus |A| and chemical potential for a
saddle point with two visons at distance d = 4

√
3, (12 × 12 triangular

lattice, κ = 0.2). A string of reversed Aij (not shown) goes from the
first vison core to the second.

states by looking at the nearest saddle point in the vicinity
of the trial state (second stage of the algorithm described in
Sec. III B). These gives access to some energetics of the visons,
and to their energy as a function distance in particular.

FIG. 14. (Color online) (Top) Energy cost of a pair of visons
as a function of distance in a 144-site triangular cluster. (Bottom)
Difference between the spinon gap � in presence of the two visons,
and the gap �0 in the absence of visons. This difference has been
scaled by κ to compare κ = 0.1 and κ = 0.3). Since � > �0, there
is some repulsion between a spinon and a vison pair.

Typical vison-pair solutions are displayed in Figs. 12
and 13. The modulation of |A| in the vicinity of each vison is
clearly visible, as well as the higher (less negative) chemical
potentials in the core regions. In this case (κ = 0.2), the vison
core radius is of the order of two lattice spacings. These excited
states are, however, not local minima, but saddle points. In all
the cases considered here (vison distance from 2 to 4

√
3), we

find four negative Hessian eigenvalues, with a rather weak
dependence on the vison separation.

A calculation of the bond modulations in a vison mean-field
state was recently carried out by Huh, Punk, and Sachdev36

using an effective model valid in the limit of large spinon gap.
Their result indicates that |Aij | decreases on all the bonds close
to the vison core. In our calculation, it appears that the some
moduli are indeed depressed, but some are also enhanced (red
bonds in Fig. 12 and grey bonds in Fig. 13).

Some aspects of the visons energetics are summarized in
Fig. 14. In the large-N framework, these energies should be
multiplied by a factor N . It can be checked that their mutual
interaction is very weak, since the total energy hardly depends

FIG. 15. (Color online) Highly excited solution on the triangular
lattice (144 sites) with κ = 0.6 (ordered phase). (Top) Bond am-
plitudes. (Bottom) Spin-spin correlations and fluxes. If 〈S0 · Si〉 is
positive while 〈S1 · Si〉 and 〈S2 · Si〉 are negative, the site i is said to
belong to the “0” sublattice (blue circles). Likewise, the site which
are positively correlated with site 1 (respectively 2) are marked in
red (respectively green). The other sites are marked in black and the
radius of the circle is proportional to the maximum of |〈S0 · Si〉|,
|〈S1 · Si〉| and |〈S2 · Si〉|. The diamonds have vanishing flux except
for those marked by a grey circle, which have a flux π (see text).
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on the distance, as expected in a gapped Z2 liquid phase.
These calculations also provide some information about the
spinon-vison interactions. This question is important since
vison-spinon bound states have fermionic mutual statistics.35

It appears, however, that the spinon gap � is slightly
higher in presence of a vison pair than in the ground state
(�0). This indicates some vison-spinon repulsion and makes
unlikely the existence of a bound-state between these two
excitations.

We investigated the effect of inserting two π fluxes far
apart in the magnetic phase of the model. Since the system
is magnetically ordered, visons are no longer low-energy
excitations. Starting from a vison-pair trial state we look for
the nearest self-consistent mean-field state. A typical result
is shown in Fig. 15, where the initial state was chosen to
have two localized visons at the same locations as in Fig. 13.
At the end of the numerical optimization (stage 2 only), it
appears the algorithm has converged to a (unstable) saddle
points where some additional pairs diamonds with flux π

are present. These additional fluxes form an elongated ring
enclosing the two initial vison cores. Contrary to the vison-pair
states in the liquid phase, the spin-spin correlations are strongly
modified all the way inside the ring (bottom panel of Fig. 15).
Indeed, the three sublattice is destroyed, although the spin-spin
correlations remain large (black circle radii). This state appears
to be similar to a classical vortex/antivortex pair.

V. SUMMARY AND CONCLUSIONS

We have developed a numerical method to explore the
low-energy SBMFT solutions on finite clusters up to one
hundred bonds, without any assumption on the symmetries
of the solutions. The algorithm is able to determine the global
energy minimum, the spectrum of its Hessian matrix, as well
as excited saddle points. The high numerical accuracy allows
to resolve saddle points with small energy differences and
very weak spatial modulations. The Bogoliubov spectrum of
spinons excitations has already been discussed at length in the
litterature on SBMFT. In this work, we instead focused on the
nonmagnetic excitations associated to small (quadratic) bond
fluctuations in the vicinity of the ground state, or those that
correspond to excited saddle points.

At low κ , the SBMFT describes spin liquids with gapped
spinons. In the square lattice case our calculations confirmed
that some low-energy nonmagnetic excitations are associated
to gauge degrees of freedom. These excitations are gapless,

and linearly dispersing U(1) “photons”. They are associated to
the first eigenvalues of the Hessian describing small amplitude
phase fluctuations in the vicinity of the ground state. As
expected, we observe that these photons get gapped when
entering the magnetically ordered phase, due to spinons
condensation. On the triangular lattice, we found saddle points
corresponding to pairs of Z2 vortices (visons). We presented
some results concerning the energetics of these visons (gap
and and weak mutual attraction).

In addition to these excitations, which are qualitatively well
undertsood, the SBMFT energy landscape revealed in all cases
a large number of low-energy excited saddle points, which do
not appear to correspond to some intuitively simple excitation.
For instance, on the triangular lattice, the presence of low-
energy saddle points with complex/chiral fluxes do not have
a simple explanation in terms of the Z2 gauge degrees of
freedom that are expected to describe the low-energy physics
of a short-range RVB spin liquid. This surprising observation
clearly deserves further investigations. Can they be related to
some real spin excitations or are they specific to the N = ∞
limit? Can they provide some information about the finite N

fluctuations?
In the magnetic phases of the square and triangular lattice

models, the first excited saddle point turn out to be a pointlike
object, with some spin “texture” localized around some core.
This texture appears to be planar in the triangular case and
nonplanar in the square lattice case, but here also the precise
connection with spin excitations of an SU (2) model is not
obvious. The present study is probably just a first descriptive
step toward a better understanding of this large-N limit.

We finally mention that, on the kagome lattice, this
approach also reveals a complex landscape with tiny energy
scales, and some unexpected symmetry breaking in the (mean-
field) ground state of small clusters. Work is in progress to
determine the actual ground state symmetry on larger clusters
(108 sites in particular), where none of the two well-studied
states (

√
3 × √

3 and q = 0) is the the lowest-energy state for
κ = 1.31
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